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Ordering ambiguity associated with the von Roos position dependent mass (PDM)
Hamiltonian is considered. An affine locally scaled first order differential introduced,
in Eq. (9), as a PDM-pseudo-momentum operator. Upon intertwining our Hamiltonian,
which is the sum of the square of this operator and the potential function, with the
von Roos d-dimensional PDM-Hamiltonian, we observed that the so-called von Roos
ambiguity parameters are strictly determined, but not necessarily unique. Our new
ambiguity parameters’ setting is subjected to Dutra’s and Almeida’s, Phys. Lett. A. 275
(2000) 25 reliability test and classified as good ordering.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. INTRODUCTION

Quantum mechanical Hamiltonians with position dependent mass (PDM)
constitute interesting and useful models for the study of many physical problems
(Alhaidari, 2002, 2003; Arias de Saaverda et al., 1994; Bagchi et al., 2004;
Barranco et al., 1997; Bastard, 1988; Ben Danial and Duke, 1966; Brezini et al.,
1995; Borges et al., 1988; Burt, 1992; Cooper et al., 1995; Csavinszky and Elabsy,
1988; de Souza Dutra, 2006; Dong and Lozada-Cassou, 2005; Einevoll, 1990;
Einevoll and Hemmer, 1988; Galbraith and Duggan, 1988; Geller and Kohn, 1993;
Gora and Williams, 1969; Hagston et al., 1994; Jiang et al., 2005; Koç et al., 2005;
Lévai, 1994; Li and Kuhn, 1993; Lipparini, 1997; Morrow and Browstein, 1984;
Mustafa and Mazharimousavi, 2006a,b,c,d,e,f; Puente and Casas, 1994; Puente
et al., 1994; Plastino et al., 2001; Quesne, 2006; Quesne and Tkachuk, 2004;
Schmidt, 2006; Serra and Tanaka, 2006; von Roos, 1983; Zhu and Kroemer, 1983).
They are used in the energy density many-body problem (Puente and Casas, 1994),
in the determination of the electronic properties of the semiconductors (Bastard,
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1988) and quantum dots (Serra and Lipparini, 1997), in quantum liquids (Arias de
Saaverda et al., 1994), in 3He clusters (Barranco et al., 1997) and metal clusters
(Puente et al., 1994), in the Bohmian approach to quantum theory (cf., e.g. Plastino
et al., 2001), in the full and partial wave-packet revivals (cf., e.g., Schmidt, 2006),
etc. Comprehensive reviews on the applicability of such position dependent mass
settings could be found in the sample of references in Arias de Saaverda et al.
(1994), Barranco et al. (1997), Bastard (1988), de Souza Dutra (2006), Dong and
Lozada-Cassou (2005), Puente and Casas (1994), Puente et al. (1994), Plastino
et al. (2001), Schmidt (2006), Serra and Lipparini (1997), Tanaka (2006), and
Quesne (2006).

However, it is concreted that an ordering ambiguity conflict arises in the
process of defining a unique kinetic energy operator, due non-commutativity
between the momentum operator p̂x = −i∂x and the position dependent mass
M (x) = m◦m (x). A problem that has shown poor advancement over the last few
decades.

In general, working on PDM Hamiltonians is inspired by the von Roos
Hamiltonian (1983) proposal (with h = 2m◦ = 1)

H = −1

2
[m(x)α∂xm(x)β∂xm(x)γ + m(x)γ ∂xm(x)β∂xm(x)α] + V (x) (1)

subjected to von Roos constraint

α + β + γ = −1; α, β, γ ∈ R (2)

Hamiltonian (1) may, in a straightforward manner and with the constraint (2), be
very well recast (cf., e.g., de Souza Dutra, 2006; Quesne, 2006; Tanaka, 2006) as

H = −∂x

(
1

m (x)

)
∂x + Ṽ (x) , (3)

with

Ṽ (x) = 1

2
(1 + β)

m′′ (x)

m (x)2 − [α (α + β + 1) + β + 1]
m′ (x)2

m (x)3 + V (x) , (4)

where primes denote derivatives. Obviously, nevertheless, the profile of Ṽ (x)
(namely the first two terms in (4)) changes as the parameters α, β, and γ change,
manifesting therefore the eruption of ordering ambiguity in the process of choosing
the kinetic energy operator T̂ . Hence, α, β, and γ are usually called the von Roos
ambiguity parameters.

Several proposals for the kinetic energy operator are suggested in literature.
Amongst exist; the Gora and Williams (β = γ = 0, α = −1) (1969), Ben Danial
and Duke (α = γ = 0, β = −1) (1966), Zhu and Kroemer (α = γ = −1/2,

β = 0) (1983), and Li and Kuhn (β = γ = −1/2, α = 0) (1993). However, the
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Hermiticity of the kinetic energy operator, the current density conservation, the
experimental results (Brezini et al., 1995; Csavinszky and Elabsy, 1988; Einevoll
and Hemmer, 1988; Galbraith and Duggan, 1988; Hagston et al., 1994; Morrow
and Browstein, 1984), and the condensed matter theories (Burt, 1992; Geller and
Kohn, 1993) may give some ideas on the identity of the von Roos ambiguity
parameters. Applying Hamiltonian (1) to an abrupt heterojunction between two
crystals (cf., e.g., sample of references in Borges et al., 1988; Burt, 1992; Einevoll
and Hemmer, 1988; Einevoll, 1990; Geller and Kohn, 1993; Koç et al., 2005), for
example, implied that for α �= γ the wave function vanishes at the heterojunction
(i.e., the heterojunction plays the role of an impenetrable barrier). Hence, the
only feasible cases are due α = γ to ensure the continuity of m (x)α ψ (x) and
m (x)α+β [∂xψ (x)] at the heterojunction boundary.

Very recently, however, Dutra and Almeida (2000) have carried out a re-
liability test on the orderings available in literature. They have used an exactly
solvable Morse model and concluded that the orderings of Gora and Williams
(a = β = γ = 0, α = −1) (1969), and Ben Danial and Duke (a = α = γ = 0,

β = −1) (1966) should be discarded for they result in complex energies. Neverthe-
less, they have classified the ordering of Zhu and Kroemer (a = 0, α = γ = −1/2,

β = 0) (1983), and that of Li and Kuhn (a = α = 0, β = γ = −1/2) (1993) as
good orderings. Yet, they have shown that Weyl (cf., e.g., Borges et al., 1988; Koç
et al., 2005) and Li and Kuhn (1993) orderings are equivalent.

Ultimately, therefore, the continuity conditions at the heterojunction bound-
aries and Dutra’s and Almeida’s (2000) reliability test single out Zhu and Kroemer
(a = 0, α = γ = −1/2, β = 0) (1983) as good ordering. This, in effect, inspires
our current methodical proposal and manifests the introduction of a PDM-pseudo-
momentum operator which, in turn, leads to a new good ordering.

On the other hand, within a Liouvillean-type change of variables spiritual
lines, the point canonical transformation (PCT) method for Schrödinger equation
often mediates a transition between two different effective potentials. That is, in the
PCT settings, one needs the exact solution of a potential model in a class of shape
invariant potentials to form the so-called reference/old potential. The reference/old
potential along with its exact solution (i.e. eigenvalues and eigenfunctions) is
then mapped into the so-called target/new potential, hence exact solution for the
target/new potential is obtained. For more details on this issue the reader may
refer to (e.g., Alhaidari, 2002; Mustafa and Mazharimousavi, 2006a).

In this parer, we recollect (in Section 2) the d-dimensional form of the
von Roos Hamiltonian suggested by de Souza Dutra (2006), Quesne (2006),
and Tanaka (2006) and introduce our PDM-pseudo-momentum operator. The
consequences of such operator’s setting on the von Roos ambiguity parameters
are given in the same section. Moreover, the corresponding d-dimensional radial
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Schrödinger Hamiltonian and the PCT d-dimensional mapping are also reported.
Our concluding remarks are given in Section 3.

2. d-DIMENSIONAL VON ROOS HAMILTONIAN AND PDM-PSEUDO-
MOMENTUM OPERATORS

Quesne (2006), Tanaka (2006), and de Souza Dutra (2006) has suggested a
general form of von Roos d-dimensional PDM Schrödinger equation{

−1

2
[m (q)α ∂jm (q)β ∂jm (q)γ + m (q)γ ∂jm (q)β ∂jm (q)α]

}
ψ (q)

+{V (q) − E} ψ (q) = 0, (5)

where q = (q1, q2, . . . , qd ) , ∂j = ∂/∂qj , j = 1, 2, . . . , d, m (q) is the dimen-
sionless form of the mass M (q) = m◦m (q), V (q) is the potential function,
and summation runs over repeated indices. In this case, the d-dimensional PDM
Schrödinger Hamiltonian reads

H = −∂j

(
1

m (q)

)
∂j + Ṽ (q) , (6)

with

Ṽ (q) = 1

2
(1 + β)

∂j ∂jm (q)

m (q)2 − [α (α + β + 1) + β + 1]
[∂jm (q)]2

m (q)3 + V (q) .

(7)

Let us now consider, for simplicity, quasi-free-particles’ setting (i.e., V (q)
= 0). Then it would be obvious that the quasi-free-particles’ Hamiltonian structure
suggests that the kinetic energy operator

T̂ = −∂j

(
1

m (q)

)
∂j + 1

2
(1 + β)

∂j ∂jm (q)

m (q)2

− [α (α + β + 1) + β + 1]
[∂jm (q)]2

m (q)3 (8)

may, mathematically speaking, very well be expressed as the square of a first-order
differential vector operator of a general form

�̂j = −i{F (m (q)) ∂j + Gj (m (q))}. (9)

This would (with F (m (q)) ≡ F (q) = F , Gj (m (q)) ≡ Gj (q) = Gj for simplic-
ity, and T̂ = �̂2 = δij �̂i�̂j ) imply

T̂ = −F 2∂j ∂j−[F (∂jF ) + 2FGj ]∂j − [F (∂jGj ) + GjGj ], (10)
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If we compare Eq. (10) with (8) we obtain

F (q) = ± 1√
m(q)

,

∂jm (q)

m (q)2 = −2F∂jF = −[F (∂jF ) + 2FGj ],

Gj = ∂jF

2
; (11)

The structure of our first-order differentioal operator is therefore clear and
can be cast as

�̂j = −i

{
F (q) ∂j + 1

2
[∂jF (q)]

}
. (12)

At this point, it should be noted that our operator �̂ is Hermitian and represents
the position-dependent-mass generalization of the ordinary momentum operator
p̂j = −i∂j (i.e., at constant mass settings M (x) = m◦). Hence, �̂ could be labeled,
hereinafter, as a PDM-pseudo-momentum operator.

2.1. Consequences of Our PDM-pseudo-momentum Operator �̂

on the von Roos Ambiguity Parameters

In a straightforward manner it is easy to show that

�̂2 = −∂j

(
1

m (q)

)
∂j + 1

4

∂j ∂jm(q)

m(q)2
− 7

16

[∂jm (q)]2

m(q)3
. (13)

Comparing this result with the kinetic energy operator T in (8) we obtain

(1 + β) = 1

2
, [α (α + β + 1) + β + 1] = 7

16
, (14)

which in turn suggests that the von Roos ambiguity parameters are strictly deter-
mined (but not necessarily unique) as

β = −1

2
, and α = γ = −1

4
. (15)

Hence, the d-dimensional von Roos Hamiltonian reads

H = −∂j

(
1

m (q)

)
∂j + Ṽ (q) = −�∇d

(
1

m (q)

)
· �∇d + Ṽ (q) (16)

with

Ṽ (q) = 1

4

∂j ∂jm(q)

m(q)2
− 7

16

[∂jm (q)]2

m(q)3
+ V (q). (17)
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At this point, one may wish to subject such ambiguity parameters’ set-
tings (15) to Dutra’s and Almeida’s (2000) reliability test on the exactly solv-
able one-dimensional Morse model (see Eqs. (10)–(16) in de Souza Dutra and
Almeida (2000)). Such test shows that the ambiguous term ν (α, β, γ, a) =√

1/4 − 2q/c2 = 1/4 (i.e., Eq. (16) in de Souza Dutra and Almeida (2000) for
α = γ = −1/4, β = −1/2) and classifies our ordering as a good-ordering (along
with that of Zhu’s and Kroemer’s (1983)).

2.2. Corresponding d-Dimensional Radial Schrödinger Hamiltonian

We, in the forthcoming developments, shall assume the radial symmetriza-
tion of m (q) and V (q) in the d-dimensional radially symmetric Schrödinger
Hamiltonian for d ≥ 2. Under these settings, (17) and (18) imply

Hr,d = −∂j

(
1

m (r)

)
∂j + Ṽ (r) = −�∇d

(
1

m (r)

)
· �∇d + Ṽ (r) (18)

where

Ṽ (r) = 1

4

∂2
r m(r)

m(r)2
− 7

16

[∂rm(r)]2

m(r)3
+ V (r) ; R � r ∈ (0,∞) (19)

Recollecting that the d-dimensional wave function for radially symmetric
Schrödinger equation is given by

	 (�r) = r−(d−1)/2Rnr ,
d
(r) Y
d ,md

(θ1, θ2, . . . , θd−2, ϕ) . (20)

would, in turn, when substituted in{
−�∇d

(
1

m (r)

)
· �∇d + Ṽ (r)

}
	 (�r) = Ed	 (�r) , (21)

results in the following d-dimensional radial Schrödinger equation{
d2

dr2
− 
d (
d + 1)

r2
+ m′ (r)

m (r)

(
d − 1

2r
− d

dr

)
− m (r) [Ṽ (r) − Ed ]

}

× Rnr ,
d
(r) = 0. (22)

Where 
d = 
 + (d − 3) /2 for d ≥ 2, 
 is the regular angular momentum quantum
number, and nr = 0, 1, 2, . . . is the radial quantum number. Of course, Eq. (23)
is privileged with the inter-dimensional degeneracies associated with the isomor-
phism between angular momentum 
 and dimensionality d. On the other hand,
moreover, the d = 1 (with R � r ∈ (0,∞) −→ R � x ∈ (−∞,∞)) case can be
obtained through the trivial substitutions 
d = −1 and 
d = 0 for even and odd
parity, P = (−1)
d+1, respectively. Yet, a unique isomorphism exists between the
S-wave (
 = 0) energy spectrum in 3D and in 1D. On this issue, the reader may
wish to refer to, e.g., Mustafa and Znojil (2002), Mustafa and Mazharimousavi
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(2006a,b,c,d,e,f), Alhaidari (2002, 2003), Jiang et al. (2005), Quesne and Tkachuk
(2004) and references cited therein.

2.3. Corresponding PCT d-Dimensional Mapping

In this section, we closely follow Mustafa’s and Mazharimousavi’s recipe
discussed in Alhaidari (2002), and Mustafa and Mazharimousavi (2006b). Where,
a substitution of the form R (r) = m (r)1/4 φ (Z (r)) in (22) would result in Z′ (r) =√

m (r), manifested by the requirement of a vanishing coefficient of the first-order
derivative of φ (Z (r)) (hence a one-dimensional form of Schrödinger equation is
achieved), and suggests the following point canonical transformation

Z (r) =
∫ r √

m (y) dy =⇒ φnr ,
d
(Z (r)) = m (r)−1/4 Rnr ,
d

(r) . (23)

Which in effect implies{
− d2

dZ2
+ 
d (
d + 1)

r2m (r)
+ Veff (r) − Ed

}
φnr ,
d

(Z) = 0, (24)

where

Veff (r) = V (r) − Ud (r) ; Ud (r) = m′ (r) (d − 1)

2r m (r)2 . (25)

It should be noted, however, that the definition of Ud (r) in (25) is now more
simplified than that in Eq. (8) of Mustafa and Mazharimousavi (2006b), and
Alhaidari (2002).

On the other hand, an exactly solvable (including conditionally-exactly or
quasi-exactly solvable) d-dimensional time-independent radial Schrödinger wave
equation (with a constant mass M (x) = m◦ and h = 2m◦ = 1 units){

− d2

dZ2
+ Ld (Ld + 1)

Z2
+ V (Z) − ε

}
ψnr ,
d

(Z) = 0 (26)

would form a reference for the exact solvability of the target Eq. (24). That is, if
the exact/conditionally-exact/quasi-exact solution (analytical/numerical) of (26)
is known one can construct the exact/conditionally-exact/quasi-exact solution of
(24) through the relation


d (
d + 1)

r2m (r)
+ V (r) − Ud (r) − Ed ⇐⇒ Ld (Ld + 1)

Z2
+ V (Z) − ε, (27)

Where Ld is the d-dimensional angular momentum quantum number of the refer-
ence Schrödinger equation. The reference-target map is therefore complete and an
explicit correspondence (cf. e.g., Znojil and Lévai, 2000; Alhaidari, 2003; Jiang
et al., 2005; Mustafa and Mazharimousavi, 2006a; Quesne and Tkachuk, 2004)
between two bound state problems is obtained.
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A power-law position dependent mass of the form m (r) = ςrυ , for example,
would imply a PCT function

Z(r) = √
ς

∫ r

yυ/2dy = 2
√

ς

(υ + 2)
r (υ+2)/2 =⇒ (υ + 2)

2
Z(r) = r

√
m(r) (28)

and hence Eq. (26) gives

Ud (r) = υ (d − 1)

2r2m (r)
≡ 2υ (d − 1)

(υ + 2)2 Z (r)2 ; υ �= −2 (29)

Relation (28) in effect reads,

λ (λ + 1)

r2m (r)

(υ

2
+ 1

)2
+ V (r) − Ed ⇐⇒ Ld (Ld + 1)

Z2
+ V (Z) − ε, (30)

with

λ = −1

2
+ |υ + 2|−1

√(υ

2
+ 1

)2
+ 4
d (
d + 1) + 2υ (1 − d); υ �= −2. (31)

However, for υ = −2 =⇒ m (r) = αr−2 we obtain

Z (r) = √
ς

∫ r

t−1dt = √
ς ln r, (32)

and hence

Ũd (υ = −2) = 
d (
d + 1)

ς
− Ud (r, υ = −2)

= 
d (
d + 1) + d − 1

ς
. (33)

Which would only add a constant to the left-hand-side of (28) to yield, with
Ld = 0 and/or Ld = −1 (i.e., only s-states and/or d = 1 states are available from
the right-hand-side of (28)),

V (r) + Ũd (υ = −2) − Ed ⇐⇒ V (q) − ε. (34)

3. CONCLUDING REMARKS

In this paper we have developed a Hermitian PDM-pseudo-momentum op-
erator �̂j = −i{F (q)∂j + [∂jF (q)]/2},where F (q) = ±1/

√
m(q). Hereby, the

notion of PDM-pseudo-momentum operator is inspired by the fact that �̂ has an
in-built regular momentum operator p̂j = −i∂j , which is recoverable at constant
mass settings (i.e., M (q) = m◦ =⇒ F (q) = ±1). Moreover, we have constructed
our d-dimensional PDM-Hamiltonian, HMM = �̂2 + V (q) .

On the other hand, upon intertwining our Hamiltonian, HMM , with the von
Roos d-dimensional PDM-Hamiltonian, HvR = T̂d (α, β, γ ) + V (q), (cf., e.g., de
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Souza Dutra, 2006; Quesne, 2006; Tanaka, 2006), we have observed that the so-
called von Roos ambiguity parameters (i.e., α, β and γ ) are strictly determined
(i.e., β = −1/2 and α = γ = −1/4), but not necessarily unique of course. There-
fore, the von Roos d-dimensional PDM-Hamiltonian collapses into

HvR =⇒ HMM = −m (q)−1/4 ∂jm (q)−1/2 ∂jm (q)−1/4 + V (q) . (35)

On the logistical supportive sides of our strict determination of the von Roos
ambiguity parameters β = −1/2 and α = γ = −1/4, we recollect that (Bagchi
et al., 2004; Cooper et al., 1995; Lévai, 1994), while analyzing the so-called
quasi-free-particle problem, have used an intertwining relationship ηH = H1η

(where η is a Darbouxal first-order intertwining operator) and reported that such
choices of the ambiguity parameters correspond to smooth mass functions m (x)
that signalled the formation of bound states. Yet, Borges et al. (1988), and Koç
et al. (2005) have started with α = γ = 0 and β = −1 with constant potential
V (z) = V◦ (Eq. (3) of Borges et al. (1988), and Koç et al. (2005)) in their study
of transmission probabilities of the scattering problem through a square well
potential with PDM barrier. However,they were forced to change the potential form
(Eq. (4) of Borges et al. (1988), and Koç et al. (2005)) into

V (z) = V◦ + h2

8m (z)2

(
m′′ (z) − 7m′ (z)2

4m (z)

)
(36)

which is exactly the same form of the effective potential that comes out from
our Eq. (17) with the new β = −1/2 and α = γ = −1/4 parameters setting (of
course one should mind the units used in this paper, h = 2m◦ = 1). Moreover,
Dutra’s and Almeida’s (2000) reliability test resulted in classifying our ordering
as a good-ordering (along with that of Zhus and Kroemer’s, 1983; Li and Kuhn’s,
1993).

Therefore, the continuity conditions at the heterojunction boundaries and de
Souza Dutras and Almeida’s (2000) reliability test would ultimately single out
Zhu and Kroemer (a = 0, α = γ = −1/2, β = 0) (1983) and our new ordering
(β = −1/2, α = γ = −1/4) as good orderings.

On the least consequential research stimulant side, such ambiguity parame-
ters’ setting would, in effect, flourish a production-line for new sets of exactly-
solvable, quasi-exactly solvable, and conditionally-exactly solvable target/new
Hamiltonian models. The point canonical transformation (PCT) method used in
this work exemplifies one of the methods that generate such spectrum of exact-
solvability. For example, for a reference/old exactly-solvable

Ṽeff (Z) = Ld (Ld + 1)

Z2
+ V (Z)
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in (30) there is a corresponding target/new exactly-solvable

Ṽeff (r) = λ (λ + 1)

r2m (r)

(υ

2
+ 1

)2
+ V (r)

where λ is given by (31) and υ �= −2. Yet, a comprehensive number of illustrative
examples on the generalized d-dimensional PCT is given by Alhaidari (2002),
and Mustafa and Mazharimousavi (2006b). Of course other methods designed
to obtain exact-solvability do exist. Amongst, we may name the Lie algebraic
method (cf., e.g., Bagchi et al. (2004), Cooper et al. (1995), and Lévai (1994)),
intertwining operators related to supersymmetric quantum mechanics (SUSYQM)
method (cf., e.g., de Souza Dutra (2006), Quesne (2006), and Tanaka (2006)), and
the shape-invariance technique (cf., e.g., de Souza Dutra (2006), Quesne (2006),
Tanaka (2006), Bagchi et al. (2004), Cooper et al. (1995), and Lévai (1994)).

On the feasible applicability side of our strictly determined von Roos ambigu-
ity parameters, the applicability of such ambiguity parameters’ recipe should not
only be restricted to Hermitian PDM Hamiltonians but also to a broader class of
non-Hermitian PDM η-weak-pseudo-Hermitian Hamiltonians (cf., e.g., Mustafa
and Mazharimousavi (2006c,d,e,f) and related references cited therein).
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